Identification of a novel transcription factor binding element involved in the regulation by differentiation of the human telomerase (hTERT) promoter.
نویسندگان
چکیده
Three different cell differentiation experimental model systems (human embryonic stem cells, mouse F9 cells, and human HL-60 promyelocytic cells) were used to determine the relationship between the reduction in telomerase activity after differentiation and the regulation of the promoter for the hTERT gene. Promoter constructs of three different lengths were subcloned into the PGL3-basic luciferase reporter vector. In all three experimental systems, all three promoter constructs drove high levels of reporter activity in the nondifferentiated state, with a marked and time-dependent reduction after the induction of differentiation. In all cases, the smallest core promoter construct (283 nt upstream of the ATG) gave the highest activity. Electrophoretic mobility shift assays revealed transcription factor binding to two E-box domains within the core promoter. There was also a marked time-dependent reduction in this binding with differentiation. In addition, a distinct and novel element was identified within the core promoter, which also underwent time-dependent reduction in transcription factor binding with differentiation. Site-directed mutagenesis of this novel element revealed a correlation between transcription factor binding and promoter activity. Taken together, the results indicate that regulation of overall telomerase activity with differentiation is mediated at least in part at the level of the TERT promoter and provides new information regarding details of the regulatory interactions that are involved in this process.
منابع مشابه
Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells.
The transcriptional regulation of the human telomerase catalytic subunit (hTERT) plays a critical role in telomerase activity. Approximately 200 bp of the proximal core promoter is responsible for basic hTERT expression; however, the function of the distal regulatory elements remains unclear. The transcription factor activator protein 1 (AP-1) is involved in cellular proliferation, differentiat...
متن کاملRegulation in Normal and Malignant Human Ovarian Epithelial Human Telomerase Reverse Transcriptase Promoter
The telomerase RNA-protein complex responsible for maintenance of telomeric DNA at chromosome ends, is usually inactive in most primary somatic human cells, but is specifically activated with in vitro immortalization and during tumorigenesis. Although expression of the RNA component of telomerase appears to be constitutive, the expression pattern of human telomerase reverse transcriptase (hTERT...
متن کاملHuman telomerase reverse transcriptase promoter regulation in normal and malignant human ovarian epithelial cells.
The telomerase RNA-protein complex responsible for maintenance of telomeric DNA at chromosome ends, is usually inactive in most primary somatic human cells, but is specifically activated with in vitro immortalization and during tumorigenesis. Although expression of the RNA component of telomerase appears to be constitutive, the expression pattern of human telomerase reverse transcriptase (hTERT...
متن کاملThe telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3.
Recent evidence has accumulated that the dynamic histone methylation mediated by histone methyltransferases and demethylases plays key roles in regulation of chromatin structure and transcription. In the present study, we show that SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase implicated in oncogenesis, directly trans-activates the telomerase reverse transcriptas...
متن کاملThe human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter.
Telomerase, the enzyme that synthesizes telomeric DNA, is not expressed in most human somatic cells but is activated with in vitro immortalization and during tumorigenesis, and repressed by cell differentiation. Of the two components of the core enzyme, the catalytic protein hTERT is limiting for activity. To investigate mechanisms of hTERT gene regulation, we have cloned genomic sequences enco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2000